西门子PLC与西门子变频器怎么连接通讯。
在step7里进行硬件组态,设定PLC的地址,和变频器的地址(西门子的变频器地址参数为P918,应和PLC里的组态地址相对应)并选择变频器的数据交换方式如用PPO3,触摸屏里设定屏地址。后是编程,通常我们用SFC14和SFC15来和变频器进行数据交换,PLC主要处理变频器发送来的状态字,然后给出指令。
智能建筑与电动汽车间的对话:城市能源互联网不再遥远
所谓的“智慧城市”将以能够平衡电力供需的电网为特征。打造智慧城市,始于建设智能建筑,建筑物要能够了解住户用电需求,可以将电动汽车电池纳入电力预测范围,并对不断变化的天气条件做出响应,以及自动调整以大限度提高其能效。西门子涉足所有以上这些领域。
世界上先进的建筑物都有“大脑”——一种能够平衡并调和各种相冲突利益需求的神经系统,比如,要能大限度地降低能耗、并保证住户舒适度和电网稳定性等。
西门子开发了能够做到这一点的楼宇自控系统。这个名为“Desigo CC”的系统是一个允许将所有楼宇系统整合到一起上进行直观操作的管理平台。来自西门子楼宇科技的Naoufel Ayachi表示:“当前,消防、采暖、通风和气候控制、照明、录像监视等建筑物的所有系统,通常仍然是单独控制的。我们的管理站**次将所有这些系统整合起来,并实时显示每一个系统的状态。因此,工作人员仅需接受一套系统的培训即可,这也是许多办公楼、学校、医院和购物中心以及数座机场纷纷部署Desigo CC的原因之一。”
尽管取得了这样的成功,但新管理平台设立的标准仅仅是个开端,因为Desigo已经成为了西门子打造一系列智能楼宇开发项目的核心要素,并为将来在整个城区实现智能化提供帮助
当建筑物与汽车进行通讯时
多年来,能源*一直在追问,城市电网怎样才能支持大量的电动汽车。如今,答案已逐渐浮现。在欧盟开展的名为Artemis电力互联网研究项目的框架内,西门子研究人员已经借助Desigo平台,展示了如何将电动汽车车队集成到楼宇管理中。来自西门子研究院的Randolf Mock解释道:“在这个项目中,我们将电动汽车连接至Desigo平台,并且不仅仅将它们视为用电者,而且也将之视作临时储能装置。就楼宇管理而言,它们可以充当蓄电装置。譬如,早晨,电动汽车抵达写字楼,并连接至充电站——但在傍晚员工们回家之前它们不必充满电。白天这些车辆可以被用作缓冲装置,譬如,在突然变天乌云密布时,它们反而可以向楼宇输送电能,从而弥补屋顶光伏发电系统发电量的下降。”
实现这一点的基础是允许车辆与充电站进行通讯的“能源互联网”。而在这个例子中,楼宇管理系统从充电站获得了关于车辆充电需求的信息。然后,它根据这些信息,以及从气候控制、采暖装置及其他耗电设备等采集来的数据,来预告第二天的用电需求。Mock解释道:“需求预告会发送给电网运营商,后者再据此建议保证用电量情况下的固定价格。如果楼宇未能遵循其需求预测,换句话说,如果它耗用的电能太多或太少,那么,它可能要支付罚金。为了避免发生这种情况,Desigo将连接至充电站的电动汽车作为蓄电或供电装置,从而可以保持整个楼宇的用电需求平稳。”
美国智能建筑榜样
西门子正在研发的智能楼宇解决方案不只是Desigo平台。美国的一个项目演示了智能楼宇不只是将电动汽车集成到供电系统中的关键因素,而且也是实现电网稳定和降低能耗需求的关键因素。来自西门子美国研究院的Thomas Grünewald表示:“在美国,有各种类型的所谓‘调峰电厂’,它们每年仅发电数个小时,以避免用电高峰时段电网**负荷。这些电厂的运营成本十分高昂,因此,对廉价解决方案的需求很大。几年前,我们在加州大学伯克利分校初次尝试了这样一种解决方案。”在这个项目中,Grünewald的团队为一栋建筑物配备了一个“智能能源盒”,它可以在用电高峰时段,有的放矢地降低用电需求。这缓解了整个电网的压力,从而也节约成本。Grünewald说:“这个智能装置可以关闭某些特定的耗电设备,例如照明和空调系统。在这个过程中,它考虑了诸如预期电价、天气预报和能让员工保持高工作效率的良好室内环境条件的标准值等因素。这既能节约能源,又能节省资金,同时还能为建筑物内的用户维持适当的舒适度。在用电高峰时段之外的其他时段,这个系统也能降低能耗需求——伯克利分校的这栋建筑物的能耗降低了30%。”
在美国科罗拉多州斯普林斯开展的一个项目中,西门子研究人员将这项技术向前推进了一步。Grünewald解释道:“我们将当地的美国空军学院的整个建筑综合体,连接到微型电网中。同伯克利分校的系统一样,软件根据电价和天气数据来管理用电需求,但这个系统还能在多栋建筑物之间分配节电潜力。这种类型的微型电网使用了基于市场的方法来处理数据,并且采用了统一的电力管理系统,在这样的布置中,它是仅次于建筑物本身的大型独立装置。甚至整个城区也可能成为这样一个智能电网的组成部分,并进行相互通信。这样一来,便可以利用合作性电力管理方法,挖掘出甚至更大的优化潜力。”
在线建筑物
这些例子表明了智能楼宇在未来所能达到的高度。这样的建筑物将能够更加精准地管理其能源需求,并且与其他建筑物相连接,以构成微型电网。这将稳定主电网,补偿供电波动,以及降低总的用电需求。
Mock说:“未来的智能楼宇将利用多种类型的临时储能装置来做到这一点,譬如,我先前提到的电动汽车,以及诸如水箱等蓄热装置和诸如飞轮等机械装置。通过我们的Desigo系统可预览如何管理和智能控制所有这些装置。”
Ayachi表示:“楼宇的智能控制也将越来越向数字化发展。未来,我们将看到没有任何基础设施的云计算解决方案。成本将低很多,这些系统将*维护,并且几乎不要求任何工作人员,客户可以*性或针对特定时间段预订系统。客户还将能通过智能手机轻松进入设置端。”
Grünewald持类似观点。他说:“未来,用户将更加广泛地使用智能手机或其他终端来与建筑物进行通信,并且还能够设置其个人舒适度参数。然后,楼宇管理系统将能够在用户抵达之前,根据用户的偏好来布置其工位,并在用户不在办公室的时候节约用电。”所有这一切综合起来,似乎楼宇将越来越有能力“听取”客户意见并满足其愿望。
尖端通讯技术正不断提高风电场的盈利能力,助力更经济高效地向可再生能源经济转型。西门子参与了由欧盟出资开展的“VirtuWind”研究项目。这个项目旨在将风电场控制网络的采购成本削减25%,将年运行成本降低10%。
风电场需要借助控制网络来配置和监控相互连接的技术组件。在VirtuWind项目中,西门子研究院的*正在将先进的通讯技术改良用于工业设施。西门子是这个项目的**人。欧盟将为这个为期三年的项目提供480万欧元资助。
风电场安全且高效的运行要求操作人员能够远程访问各种组件,如传感器、执行器和网络设备(如路由器)。为实现这一点,风电场的本地控制网络将各个风机连接至相应的控制中心。本地控制中心进而将本地网络连接至公司网络或互联网,以便操作人员访问风电场的设备和数据。这样的模式有益于风电场所有者(如E.ON)、风电场运营商(如西门子)、输电网运营商(如Tennet),以及传感器、执行器和网络路由器等设备的供应商。然而,风电场的控制网络结构非常复杂,且安装、运行和维护成本十分高昂。例如,这种网络常常需要安装安全更新程序,而这样做会干扰风机运行并要求关停风机。
先进通讯技术和软件加快工作流程
为确保网络安全可靠,VirtuWind项目采用尖端的通讯技术。*正在针对风电场的要求改良开源软件定义网络(SDN)模块和网络功能虚拟化(NFV)模块。对风机的安装、维护、持续运行和安全,智能软件起到了至关重要的作用。可编程NFV模块有助于加快并简化工作流程,减少所需硬件数量。
然而,*在改良软件模块时必须考虑到一些较其严格的要求。例如,如果多个服务供应商想要同时访问某台风机的传感器,那么,必须确认它们都有获得了授权、在所有网段都拥有一定的带宽,并且必须在保证的时限内接通信号。当某条传输路径发生故障时,系统必须能够即时切换至另一条路径。
减少现场作业量
VirtuWind项目*也分析了风电场内的异常事件,并根据分析结果扩展开源模块。得益于此,智能软件能够变更网络配置,而*更换硬件或现场作业。这样一来,风电场基础设施将允许电网运营商和服务提供商使用相同的网络资源。
西门子研究院的*还想利用这个项目取得的成果来优化其他领域的控制网络。VirtuWind是由欧盟发起的19个“5G基础设施公私合作伙伴项目”中的一个。这个欧盟项目旨在帮助开发*五代通讯标准。VirtuWind项目将一直开展到2019年。除西门子之外,项目成员还包括NEC、英特尔、德国电信、Intracom SA Telecom Solutions、Worldsensing、慕尼黑工业大学、Hellas研究与科技基金和伦敦国王学院。
在西门子PLC200编程软件中怎么找到scale-R-I指令此为西门子200PLC附加指令库(由西门子内部工程师编写),非标准库(USS、MOUDBUS)可前去西门子工业-下载中心下载-有个应用文档叫(SITOP,LOGO,S7-200,,,)0.96版本就在这里,下载下来,好好找这是西门子S7-200指令库的指令,是不在标准版安装包内的附加收费安装包里的。现在可能在西门子里可以下载得到。也可以在网上找
“Toolbox_V32-STEP 7-Micro WIN 32 Instruction Library ” 这个库指令包。网上找一下有免费的。
http://haozheng1413.b2b168.com